Human skeletal muscle metabolic economy in vivo: effects of contraction intensity, age, and mobility impairment.
نویسندگان
چکیده
We tested the hypothesis that older muscle has greater metabolic economy (ME) in vivo than young, in a manner dependent, in part, on contraction intensity. Twenty young (Y; 24±1 yr, 10 women), 18 older healthy (O; 73±2, 9 women) and 9 older individuals with mild-to-moderate mobility impairment (OI; 74±1, 7 women) received stimulated twitches (2 Hz, 3 min) and performed nonfatiguing voluntary (20, 50, and 100% maximal; 12 s each) isometric dorsiflexion contractions. Torque-time integrals (TTI; Nm·s) were calculated and expressed relative to maximal fat-free muscle cross-sectional area (cm2), and torque variability during voluntary contractions was calculated as the coefficient of variation. Total ATP cost of contraction (mM) was determined from flux through the creatine kinase reaction, nonoxidative glycolysis and oxidative phosphorylation, and used to calculate ME (Nm·s·cm(-2)·mM ATP(-1)). While twitch torque relaxation was slower in O and OI compared with Y (P≤0.001), twitch TTI, ATP cost, and economy were similar across groups (P≥0.15), indicating comparable intrinsic muscle economy during electrically induced isometric contractions in vivo. During voluntary contractions, normalized TTI and total ATP cost did not differ significantly across groups (P≥0.20). However, ME was lower in OI than Y or O at 20% and 50% MVC (P≤0.02), and torque variability was greater in OI than Y or O at 20% MVC (P≤0.05). These results refute the hypothesis of greater muscle ME in old age, and provide support for lower ME in impaired older adults as a potential mechanism or consequence of age-related reductions in functional mobility.
منابع مشابه
Running Economy from a Muscle Energetics Perspective
The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun) can be obtained with this approach. Erun is determin...
متن کاملDifferential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle.
Metabolic products of skeletal muscle contraction activate metaboreceptor muscle afferents that reflexively increase sympathetic nerve activity (SNA) targeted to both resting and exercising skeletal muscle. To determine effects of the increased sympathetic vasoconstrictor drive on muscle oxygenation, we measured changes in tissue oxygen stores and mitochondrial cytochrome a,a3 redox state in rh...
متن کاملTHE EFFECTS OF INTERVAL TRAINING INTENSITY ON SKELETAL MUSCLE PGC-1Α IN TYPE2 DIABETIC MALE RATS
Background: The purpose of this study was to compare the effects of a 12 weeks interval training with high and moderate intensity on PGC-1α of skeletal muscle in type 2 diabetic male rats. Methods: 40 male rats were divided into two groups: High fat diet (HFD) (n=32) and standard diet (C) (n=8) for 10 weeks. After inducing type2 diabetes via STZ, 8 diabetic rats (D) and 8 rats in group C rats ...
متن کاملChanges in Mitochondrial Dynamic Factors (mfn2 and drp1) Following High Intensity Interval Training and Moderate Intensity Continuous Training in Obese Male Rats
Objective: Mitochondrial content and function are important determinants of oxidative capacity and metabolic efficiency of skeletal muscle tissue. The aim of this study was to investigate the changes in mitochondrial dynamic factors (mfn2 and drp1) following high intensity interval training (HIIT) and moderate intensity continuous training (MICT) in obese male rats. Materials and Methods: In t...
متن کاملThe Effects of Eight Weeks High Intensity Intermittent Training and Blood Flow Restricted on Angiogenic Markers of Muscle in Male Runners
Background. Due to the lack of sufficient information about the interactive effects of high intensity intermittent training (HIIT) and blood flow restricted (BFR) exercises on angiogenic variables of skeletal muscle, it seems that integration these training models can influence skeletal muscle angiogenesis in the long term over the individual application of each of these training methods. Obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 307 9 شماره
صفحات -
تاریخ انتشار 2014